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This paper studies the non-linear dynamic response of a cracked rotor by taking the
swing vibration of disc into consideration. The results show that if a small crack appears,
the frequency of transverse oscillation is synchronous with rotating speed ratio (O), and the
frequency of swing vibration is NOðN¼ 1; 2; . . .Þ. As the crack increases, the response
becomes chaotic in some range of O. The deeper the crack is, the wider the chaotic range of
O is. Routes to chaos include intermittence to chaos and quasi-period to chaos. When the
crack is fairly deep, some new resonance regions develop. In these regions, the response
becomes infinity rapidly. The appearance of intermittence chaos is induced by the frequent
frustration of stable oscillation, which is resulted from the continuous increase of swing
amplitude. Unbalance parameter U is effective in suppressing chaos. Crack angle b cannot
affect the essence of response, but can influence the amplitude of synchronous response.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Fatigue cracking of a rotor shaft may cause catastrophic damage to rotating machinery, as
reported by Jack and Patterons [1]. So, detailed investigation into the dynamic response of
a rotor with crack in the shaft is very important for diagnosing and preventing rotor
cracks.

Cracked rotor is a time variable, highly non-linear system. Recently, many papers have
been published on the non-linear response and stability of rotor with opening and closing
crack.

Muller [2] applied theory of Lyapunov exponents to non-smooth dynamical system with
a cracked rotor, and found the chaotic motion and strange attractor. Sekhar [3] studied
the dynamic response of a rotor containing two open cracks by finite element method, the
influence of one crack over another with regard to eigenfrequencies, mode shapes and
threshold speed limits was observed. Zheng [4] pointed out that fatigue crack is an
important reason for the existence of lower frequency vibration components in turbo-
machines and a small fatigue crack may drive a system into instability in a very short time.
Lees [5] studied an asymmetric beam mounted horizontally and having a transverse crack,
the results had shown that as the orientation of the rotor is varied, a complicated pattern
of responses appears due to the opening and closing of the crack. The complex behavior
arises because of the rotation of the beam’s principal axes. Meng [6] investigated the
stability and the stability degree of a cracked flexible rotor supported on different kinds of
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journal bearings and gave the unstable zone caused by rotor crack, the gravity parameter
has evident influence on the system’s stability and stability degree. Zheng [7] studied the
bifurcation and chaos of cracked rotor and found that when stiffness change ratio DK is
large, the quasi-periodic and chaotic responses appear near 1/2O, 2/3O, and there are two
kinds of bifurcation from period to quasi-period.

But most of the models omitted the presence of swing vibration of discs. For a rotor
system, the swing vibration means that the inclination angle of shaft at the disc’s position
is variable with time. As shown in Figure 1, for Jeffcott rotor, since the disc is mounted at
mid-span of the shaft, there is no gyroscopic moment on the disc if there is no crack.
Under this condition, there is no swing vibration of the disc. But when crack appears near
the disc, the moment of inertia of the shaft section at the crack position becomes smaller.
This leads to the asymmetry of stiffness of shaft at the left and right side of the disc. This
asymmetry causes the disc to swing under the effect of gyroscopic moment, so that the
inclination angle of the disc varies with time. The transverse oscillation and swing
vibration constitutes the movement of the rotor system.

This paper investigates the non-linear response of cracked rotor by considering the
opening and closing behavior of the crack, with emphasis on chaos, routes to chaos and
relation between swing vibration and transverse oscillation. The ratio of moment of inertia
of cross-section (p) is introduced to describe the degree of crack instead of DK (ratio of
stiffness change). DKl (change of transverse stiffness) and DKy (change of angular stiffness)
can be expressed as a function of p.

2. EQUATION OF MOTION OF THE CRACKED ROTOR

A flexible Jeffcott rotor model is considered consisting of a rigid disc and a shaft with
crack supported by two rigid bearings, as shown in Figure 1, using fixed co-ordinate
Figure 1. Schematic diagram of a cracked rotor.
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system (OXYZ) and a rotating co-ordinate system (O0x ZZ). The crack is at mid-span of
the shaft and at the left side of the disc. The swing vibration is the variation of inclination
angle of the shaft at the disc’s position.

Although the actual crack on the shaft opens and closes gradually while rotating, the
typical ‘‘on–off’’ model still can reflect the characteristic of crack and is applied in most
cases. We use the step function to represent the opening and closing of the crack.

The equations of motion of the system can be written as

m .xx þ cd ’xx þ ðk � f �Dk cos2 otÞx � ð f �Dk sinot cosotÞy þ f �k12yy

¼ meo2 cosðot þ bþ feÞ þ mg;

m .yy þ cd ’yy þ ðk � f �Dk sin2 otÞy � ð f �Dk sinot cosotÞx � f �k12yx

¼ meo2 sinðot þ bþ feÞ;

ð1:1Þ

Jd
.yyy � Jpo’yyx þ ðky � f �Dky sin2 otÞyy þ ð f �Dky sinot cosotÞyx þ f �k12x ¼ 0

Jd
.yyx þ Jpo’yyy þ ðky � f �Dky cos2 otÞyx þ ð f �Dky sinot cosotÞyy � f �k12y ¼ 0;

ð1:2Þ

where m is the mass of the disc, k is the bending stiffness of the uncracked rotor, and ky is
the angular stiffness. kx and kyx are the bending stiffness in x direction and the angular
stiffness, respectively, when the crack is open. k12 is the cross stiffness of the shaft in
transverse and inclination direction. fe is the original phase angle. f is a switch function,
whose value is variable with f and can be written as

f ðfÞ ¼
1; f ¼ 0 	 p=2; 3p=2 	 2p;

0; f ¼ p=2 	 3p=2:

(
ð2Þ

Dk and Dky are the stiffness changing of the rotor with periodic opening and closing of the
crack and can be represented as follows:

Dk ¼ k � kx;

Dky ¼ ky � kyx;
ð3Þ

But Dk and Dky are not independent of each other. Bending and angular stiffness of the
shaft are both derived from system parameters on the basis of material mechanics. So
considering boundary conditions, solving the elastic equation of beam with circular cross-
section, we can get the following expressions:

kx ¼ sð1 þ pÞ; kyx ¼ sl2ð1 þ pÞ; k12 ¼ �slð1 � pÞ; ð4Þ

where s is a coefficient ðs ¼ 3EI0=l3Þ; p ¼ Iz=I0; Iz is the moment of inertia of cross-section
at crack position, whereas I0 is at uncracked position.

Supposing d is static deflection of the disc, dividing both sides of equation (1.1) by mdo2

and equation (1.2) by Jdo
2, the non-dimensional form of equation (1) can be obtained:

X 00 þ2D

O
X 0 þ 1

O2
� f �Dkd

O2
cos2 t

� �
X � f �Dkd

O2
sin t cos tY þf �k1

O2
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1

O2
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Y 00 þ 2D

O
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O2
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O2
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where D is the external damping ratio and

ð 0 Þ ¼ d

dt
; t ¼ ot; k1 ¼

k12

d
; k2 ¼

k12d
ky

;

Dkd ¼ Dk

k
; Dka ¼ Dky

ky
; O ¼ offiffiffiffiffiffiffiffiffi

k=m
p ; O1 ¼

offiffiffiffiffiffiffiffiffiffiffiffi
ky=Jd

p : ð6Þ

3. NON-LINEAR RESPONSE OF SYSTEM

Equation (5) is solved by the Simulink toolbox in Matlab, the switch function f is
simulated with a switch box. The differential equations are solved by the fifth order
Runge–Kutta method with variable time step.

From the numerical simulation results, it is found that the response before the first 500 T

is generally not real due to the influence of free decreasing vibration, the exact period value
depends on the external damping. So the following results are all obtained after the first
800 T (here T is the period of simulating force, it is equal to the time of a revolution of the
rotor).

The methods used to analyze non-linear vibration are Poincar"ee diagram, bifurcation
diagram, power spectrum and diagram of wave form. But for intermittence chaos, the
above methods are not very effective in showing the characteristic and grade of
intermittence. So in this paper, a new analysis method, which is called diagram of time
phase, is proposed. The diagram of time phase is the point sets that are sampled at interval
of T; so it can be regarded as a kind of diagram of time series. The diagram of time phase is
not a Poincar!ee map, but it comes from a Poincar!ee map. Generally to construct a Poincar!ee
map, X and X0 are sampled at an interval of TðoT ¼ 2pÞ; respectively, and then form
point sets on X–X0 plane. So the diagram of time phase shows the periodic characteristic of
response. In this diagram, simple periodic response corresponds to a straight line
(constituted with discrete points), quasi-periodic response corresponds to an orderly
periodic curve (constituted with discrete points) and chaos corresponds to out-of-order
points. It should be stressed here that the diagram of time phase is used only to describe
the characteristics of intermittence chaos, for periodic and quasi-periodic the Poincar!ee and
bifurcation diagrams are better.

With the change of rotating speed ratio O, the ratio of moment of inertia of cross-
section p (corresponding to depth of crack), the crack angle b and the unbalance U, the
system responses are calculated, respectively, and the following results can be deduced.

3.1. RELATION BETWEEN TRANSVERSE OSCILLATION AND SWING VIBRATION

The swing vibration is very sensitive to the occurrence of crack in the shaft. If there is no
crack, there is no swing vibration, and the transverse oscillation is synchronous with
rotating speed. If a small crack appears, the disc oscillates at a frequency of O (rotating
speed ratio), and the swing vibration is composed of harmonic components (NO,
N ¼ 1; 2; . . .Þ:As shown in Figure 2 (XAM and yAM are the value of power spectrum density
of transverse oscillation and swing vibration amplitude, respectively), when O=0�3, for a
small crack (p=0�98), the transverse oscillation is the main harmonic response, but the 1X,
2X, 3X, 5X harmonic components can be seen in the diagram of power spectrum of swing
vibration. For very small crack, oscillation is insensitive to the occurrence of crack, there is
no evident change in the amplitude of vibration. So swing vibration can be used to
determine the occurrence of small crack fault, especially for a crack in the early stage. But



Figure 2. Comparison of power spectrums of transverse oscillation and swing vibration (p=0�98, D=0�01,
O=0�3): (a) transverse oscillation and (b) swing vibration.
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the essence of swing vibration is the same as transverse oscillation, if oscillation is periodic,
quasi-periodic or chaotic, swing vibration has the same kind movement.

3.2. INFLUENCES OF SPEED RATIO(O) AND INERTIA MOMENT RATIO OF SHAFT SECTION ðPÞ

When the crack is small (p>0�85), the transverse oscillation is synchronous with O,
whereas the swing vibration includes many harmonic components. If the crack is fairly
large (0�45p50�85), in some range of O, chaos will happen. The routes to chaos are
mainly intermittence to chaos and quasi-periodic to chaos. Figure 3 shows the process of
entering and exiting chaos with the change of O. When O=1�3536, the response is period 1
(Figure 3(a)). As O increases, doubling periodic bifurcation happens, the response
becomes period 2 (Figure 3(b)). Then the second-Hopf bifurcation happens and the
response becomes quasi-periodic (Figure 3(c)). When O=1�3646, the response becomes
chaos (Figure 3(d)). With the further increase of O, the response exits chaos through
periodic doubling bifurcation from period 4 (Figure 3(e)) to period 2 (Figure 3(f)) and then
to period 1, then stabilizes on main harmonic movement (Figure 3(g)). If the crack
progresses further and becomes very large, there develops new resonance region in which
the transverse oscillation and swing vibration diverge to infinite quickly. The resonance
happens in both sub-critical region and super-critical region. In Figure 4, with time
increase, the amplitude of response goes to an unlimited extent quickly, which can be
considered divergence in rotor system. The deeper the crack is, the wider the chaos range
of O is. In Table 1, when the crack is fairly large, there will appear chaos near O=0�7848.
Then with the increase of crack (correspondingly p becomes smaller gradually), the chaotic
region of O becomes wider. If the crack is extremely large, oscillation of the disc will go
infinitely. Figure 5 shows that with the increasing of crack, the response becomes chaos
from quasi-periodic intermittence, and then exits chaos also from quasi-period, finally
Hopf bifurcation happens and the response becomes periodic-1 movement. When
p=0�706, the response is a stable quasi-periodic movement (Figure 5(a)). Then crack
increases (p=0�703), the quasi-periodic movement losses stability and becomes



Figure 3. Influence of speed ratio O on disc response (p=0�5, D=0�02): (a) O=1�3536 (Poincar!ee map), (b)
O=1�3630 (Poincar!ee map), (c) O=1�3645 (Poincar!ee map), (d) O=1�3646 (Poincar!ee map), (e) O=1�3649
(Poincar!ee map), (f) O=1�3678 (Poincar!ee map) and (g) O=1�3720 (Poincar!ee map).
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Figure 4. For large crack response amplitude increases quickly to divergence (wave form) (O=1�7, p=0�3,
D=0�01).
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intermittence chaos (Figure 5(b) and 5(c)). When p=0�650, response becomes complete
chaos (Figure 5(d)). At p=0�620, response exits chaos and returns to quasi-periodic
movement (Figure 5(e)), and then response becomes periodic movement through Hopf
bifurcation (Figure 5(f)).

3.3. INFLUENCE OF CRACK ANGLE b

The change of crack angle b will not affect the essence of the disc’s movement. If
response is chaotic, quasi-periodic or periodic at b=0, response will also be chaotic, quasi-
periodic or periodic at the other crack angle. But the pin–pin value of the synchronous
component of the response is variable with angle b. Figure 6 shows the variation of pin-pin
value of the synchronous oscillation at sub-critical speed and super-critical speed with
angle b. As b changes from 0 to 2p, the pin-pin value is smallest at b=p and is largest at
b=0 or 2p. In sub-critical speed, it is obvious that the amplitude decreases sharply at b=p
because there appears 2X harmonic component in the response here.
Table 1

The chaotic region near O=0�7848 with different crack depth (p)

P Chaotic region of O Length of chaotic region (DO)

0�49 0�7886–0�7923 0�0037
0�45 0�7848–0�7933 0�0085
0�41 0�7815–0�7967 0�0152
0�37 0�7744–0�7952 0�0208
0�33 0�772 –0�7948 0�0228
0�30 0�7692–0�7943 0�0251



Figure 5. Influence of crack depth on disc response (O=1�0583, D=0�02): (a) p=0�706 (Poincar!ee map), (b)
p=0�703 (Poincar!ee map), (c) p=0�703 (diagram of time-phase), (d) p=0�650 (Poincar!ee map), (e) p=0�620
(Poincar!ee map) and (f) p=0�600 (Poincar!ee map).
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3.4. INFLUENCE OF UNBALANCE PARAMETER U

For synchronous oscillation, the response amplitude may increase or decrease with the
increasing of U depending on the crack angle b and the relative value of unbalance and
crack. The influence of crack on synchronous component of the response could be looked
as an equivalent unbalance and the combined influence of this equivalent unbalance and
the original unbalance will determine the changing of vibration amplitude. For non-
synchronous response, when b=0, the increase of U will in some cases make the response
unstable in sub-critical region and stable in super-critical region; it is just the opposite
when b=p. As shown in Figure 7, when b=p, O=0�7, the response is chaotic for U=0�2,



Figure 6. Variation of pin–pin value of response in sub-critical and super-critical region with b (p=0�7): (a)
O=0�71 and (b) O=1�71.

Figure 7. Influence of unbalance parameter U on disc response (b=p, O=0�7): (a) U=0�2 (Poincar!ee map) and
(b) U=1�2 (Poincar!ee map)
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becomes quasi-periodic as U increases to 1�2 and stabilizes on quasi-periodic as U

increases further.

3.5. ROUTES TO CHAOS

For cracked rotor, the main route of transverse oscillation and swing vibration to chaos
is intermittence. There also exists route of quasi-period to chaos (see Figure 3). Although
there exist the routes of doubling periodic bifurcation to chaos, they are scarcely observed;
this is because when response begins to bifurcate, the effect of opening and closing of the
crack makes the response lose stability and become stable quasi-periodic directly.
Intermittence chaos can start from both periodic and quasi-periodic movement.

Figure 8 shows the time phase of the typical phenomenon of intermittence from quasi-
period. By observing carefully, it is found that the intermittence chaos results from the



Figure 8. Diagram of time phase of intermittence chaos from quasi-period (O=1�1675, D=0�01, p=0�5).
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increase of amplitude of swing vibration. When intermittence chaos begins, the oscillation
is stable, and the amplitude of swing vibration keeps increasing continuously till the stable
oscillation is broken. Then the amplitude of swing vibration decreases rapidly and the
oscillation restores stable movement gradually, the oscillation is broken again after the
stable movement for a period of time. This process constructs intermittence chaos. With
the change of parameters to worse, the stable oscillation is broken more often and the
response becomes chaotic finally. As Figure 9 shows, when O=1�5961, the intermittence
chaos begins and the periodic-1 movement is broken at a fairly long interval (Figure 9(a)).
And then, when O=1�5989, the periodic-1 movement is broken more frequently
(Figure 9(b)). Finally at O=1�6055, the periodic response is broken very frequently and
can be regarded as a complete chaotic movement (Figure 9(c)).

4. SUMMARY AND CONCLUSION

Since the cracked rotor is difficult to be analyzed, the numerical simulation is still an
effective method at present. From the above simulation results, the following conclusions
can be obtained.

(1) For the diagnosis of crack fault, the swing vibration is meaningful. If there is no crack,
there is no swing vibration (for Jeffcott rotor). If small crack occurs, swing vibration
will happen and the swing vibration includes many harmonic components. In other
words, the swing vibration is sensitive to the occurrence of crack. This is helpful for
crack diagnosis.

(2) For cracked Jeffcott rotor, the main route to chaos is intermittence. There also exists
quasi-period to chaos. The doubling periodic bifurcation to chaos is not easy to be
observed. The intermittence chaos starts from either period or quasi-period. The
appearance of intermittence chaos results from the fact that the amplitude of swing
vibration increases and the stable oscillation is frustrated.

(3) When the crack becomes deep, there will be chaotic response. If the crack is very deep,
there appear some new resonance regions in which the response will go to infinite.
These regions exist in both sub-critical and super-critical regions.



Figure 9. Development of intermittence chaos from period-1 with change of speed ratio O (wave form)
(p=0�7, D=0�04): (a) O=1�5961 (wave form), (b) O=1�5989 (wave form) and (c) O=1�6005 (wave form).
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(4) Unbalance parameter U is effective in suppressing chaos. If U is fairly large, the chaos
will be fixed to stable movement. Crack angle b can affect the synchronous response,
but it cannot affect the essence of non-synchronous and synchronous response.
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APPENDIX A: NOMENCLATURE

m mass of disc
Cd external damping
d static deflection (=mg/k)
Jd moment of inertia of disc with respect to a diameter
k stiffness of uncracked shaft
ky angular stiffness of uncracked rotor
e the unbalance eccentricity
kx, kZ stiffness of crack shaft in x and Z direction
kyx, kyZ angular stiffness of crack shaft in x and Z direction
Dk largest stiffness change in x direction
Dky largest angular stiffness change in x direction
DKd stiffness change ratio (=Dk/k)
DKy angular stiffness change ratio (=Dky/ky)
Iz moment of inertia of shaft section at crack position
D external damping ratio (=cd/2moc)
o rotating speed
x, y deflection of disc
yx, yy angular deflection of disc
p ratio of Iz and I0 (= Iz/I0)
Jp polar moment of inertia of disc
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X, Y non-dimensional deflection (=x/d, y/d)
U unbalance parameter (=e/d)
b angle between crack and unbalance
fe initial unbalance angle
x, Z body fixed rotating co-ordinate, x is in the direction of crack
oc rigid critical speed ( = (k/m)1/2)
oac rigid angular critical speed ( = (ky/Jd)

1/2)
O speed ratio ð¼ o=ocÞ
O1 speed ratio ð¼ o=oacÞ
I0 moment of inertia of uncracked rotor
t (=ot )
or response frequency
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